Saturday, 19 March 2011

Theoretical power plant designs

Confinement concepts
Parameter space occupied by inertial fusion energy and magnetic fusion energy devices as of the mid 1990s. The regime allowing thermonuclear ignition with high gain lies near the upper right corner of the plot.

Confinement refers to all the conditions necessary to keep a plasma dense and hot long enough to undergo fusion:

    * Equilibrium: There must be no net forces on any part of the plasma, otherwise it will rapidly disassemble. The exception, of course, is inertial confinement, where the relevant physics must occur faster than the disassembly time.
    * Stability: The plasma must be so constructed that small deviations are restored to the initial state, otherwise some unavoidable disturbance will occur and grow exponentially until the plasma is destroyed.
    * Transport: The loss of particles and heat in all channels must be sufficiently slow. The word "confinement" is often used in the restricted sense of "energy confinement".

The first human-made, large-scale fusion reaction was the test of the hydrogen bomb, Ivy Mike, in 1952. As part of the PACER project, it was once proposed to use hydrogen bombs as a source of power by detonating them in underground caverns and then generating electricity from the heat produced, but such a power plant is unlikely ever to be constructed, for a variety of reasons.[citation needed] Controlled thermonuclear fusion (CTF) refers to the alternative of continuous power production, or at least the use of explosions that are so small that they do not destroy a significant portion of the machine that produces them.[citation needed]

To produce self-sustaining fusion, the energy released by the reaction (or at least a fraction of it) must be used to heat new reactant nuclei and keep them hot long enough that they also undergo fusion reactions. Retaining the heat is called energy confinement and may be accomplished in a number of ways.[citation needed]

The hydrogen bomb really has no confinement at all. The fuel is simply allowed to fly apart, but it takes a certain length of time to do this, and during this time fusion can occur. This approach is called inertial confinement. If more than milligram quantities of fuel are used (and efficiently fused), the explosion would destroy the machine, so theoretically, controlled thermonuclear fusion using inertial confinement would be done using tiny pellets of fuel which explode several times a second. To induce the explosion, the pellet must be compressed to about 30 times solid density with energetic beams. If the beams are focused directly on the pellet, it is called direct drive, which can in principle be very efficient, but in practice it is difficult to obtain the needed uniformity.[citation needed] An alternative approach is indirect drive, in which the beams heat a shell, and the shell radiates x-rays, which then implode the pellet. The beams are commonly laser beams, but heavy and light ion beams and electron beams have all been investigated.[citation needed]

Inertial confinement produces plasmas with impressively high densities and temperatures, and appears to be best suited to weapons research, X-ray generation, very small reactors, and perhaps in the distant future, spaceflight.[citation needed] They require fuel pellets with close to a perfect shape in order to generate a symmetrical inward shock wave to produce the high-density plasma, and in practice these have proven difficult to produce. A recent development in the field of laser induced ICF is the use of ultrashort pulse multi-petawatt lasers to heat the plasma of an imploding pellet at exactly the moment of greatest density after it is imploded conventionally using terawatt scale lasers. This research will be carried out on the (currently being built) OMEGA EP petawatt and OMEGA lasers at the University of Rochester and at the GEKKO XII laser at the institute for laser engineering in Osaka Japan, which if fruitful, may have the effect of greatly reducing the cost of a laser fusion based power source.[citation needed]

At the temperatures required for fusion, the fuel is in the form of a plasma with very good electrical conductivity. This opens the possibility to confine the fuel and the energy with magnetic fields, an idea known as magnetic confinement. The Lorenz force works only perpendicular to the magnetic field, so that the first problem is how to prevent the plasma from leaking out the ends of the field lines. There are basically two solutions.[citation needed]

The first is to use the magnetic mirror effect. If particles following a field line encounter a region of higher field strength, then some of the particles will be stopped and reflected. Advantages of a magnetic mirror power plant would be simplified construction and maintenance due to a linear topology and the potential to apply direct conversion in a natural way, but the confinement achieved in the experiments was so poor that this approach has been essentially abandoned.[citation needed]

The second possibility to prevent end losses is to bend the field lines back on themselves, either in circles or more commonly in nested toroidal surfaces. The most highly developed system of this type is the tokamak, with the stellarator being next most advanced, followed by the Reversed field pinch. Compact toroids, especially the Field-Reversed Configuration and the spheromak, attempt to combine the advantages of toroidal magnetic surfaces with those of a simply connected (non-toroidal) machine, resulting in a mechanically simpler and smaller confinement area. Compact toroids still have some enthusiastic supporters but are not backed as readily by the majority of the fusion community.[citation needed]

Finally, there are also electrostatic confinement fusion systems, in which ions in the reaction chamber are confined and held at the center of the device by electrostatic forces, as in the Farnsworth-Hirsch Fusor, which is not believed to be able to be developed into a power plant. The Polywell, an advanced variant of the fusor,[citation needed] has shown a degree of research interest as of late; however, the technology is relatively immature,[citation needed] and major scientific and engineering questions remain which researchers under the auspices of the U.S. Office of Naval Research hope to further investigate.[citation needed]
Other approaches

A more subtle technique is to use more unusual particles to catalyse fusion. The best known of these is Muon-catalyzed fusion which uses muons, which behave somewhat like electrons and replace the electrons around the atoms. These muons allow atoms to get much closer and thus reduce the kinetic energy required to initiate fusion. Muons require more energy to produce than can be obtained from muon-catalysed fusion, making this approach impractical for the generation of power.

Some scientists have reported excess heat, neutrons, tritium, helium and other nuclear effects in so-called cold fusion systems. In 2004, a peer review panel was commissioned by the U.S. Department of Energy to study these claims.[17] This identified basic areas of research which were necessary for acceptance of the idea, but did not recommend a federally funded program.

Research into sonoluminescence induced fusion, sometimes known as "bubble fusion", also continues, although it is met with as much skepticism as cold fusion is by most of the scientific community.

In fusion research, achieving a fusion energy gain factor Q = 1 is called breakeven and is considered a significant although somewhat artificial milestone. Ignition refers to an infinite Q, that is, a self-sustaining plasma where the losses are made up for by fusion power without any external input. In a practical fusion reactor, some external power will always be required for things like current drive, refueling, profile control, and burn control. A value on the order of Q = 20 will be required if the plant is to deliver much more energy than it uses internally.

There have been many design studies for fusion power plants. Despite many differences, there are several systems that are common to most. To begin with, a fusion power plant, like a fission power plant, is customarily divided into the nuclear island and the balance of plant. The balance of plant is the conventional part that converts high-temperature heat into electricity via steam turbines. It is much the same in a fusion power plant as in a fission or coal power plant. In a fusion power plant, the nuclear island has a plasma chamber with an associated vacuum system, surrounded by plasma-facing components (first wall and divertor) maintaining the vacuum boundary and absorbing the thermal radiation coming from the plasma, surrounded in turn by a blanket where the neutrons are absorbed to breed tritium and heat a working fluid that transfers the power to the balance of plant. If magnetic confinement is used, a magnet system, using primarily cryogenic superconducting magnets, is needed, and usually systems for heating and refueling the plasma and for driving current. In inertial confinement, a driver (laser or accelerator) and a focusing system are needed, as well as a means for forming and positioning the pellets.
Inertial confinement fusion implosion on the Nova laser creates "microsun" conditions of tremendously high density and temperature.

Although the standard solution for electricity production in fusion power plant designs is conventional steam turbines using the heat deposited by neutrons, there are also designs for direct conversion of the energy of the charged particles into electricity. These are of little value with a D-T fuel cycle, where 80% of the power is in the neutrons, but are indispensable with aneutronic fusion, where less than 1% is. Direct conversion has been most commonly proposed for open-ended magnetic configurations like magnetic mirrors or Field-Reversed Configurations, where charged particles are lost along the magnetic field lines, which are then expanded to convert a large fraction of the random energy of the fusion products into directed motion. The particles are then collected on electrodes at various large electrical potentials. Typically the claimed conversion efficiency is in the range of 80%, but the converter may approach the reactor itself in size and expense.
Main article: International Fusion Materials Irradiation Facility

Developing materials for fusion reactors has long been recognized as a problem nearly as difficult and important as that of plasma confinement, but it has received only a fraction of the attention. The neutron flux in a fusion reactor is expected to be about 100 times that in existing pressurized water reactors (PWR). Each atom in the blanket of a fusion reactor is expected to be hit by a neutron and displaced about a hundred times before the material is replaced. Furthermore the high-energy neutrons will produce hydrogen and helium in various nuclear reactions that tends to form bubbles at grain boundaries and result in swelling, blistering or embrittlement. One also wishes to choose materials whose primary components and impurities do not result in long-lived radioactive wastes. Finally, the mechanical forces and temperatures are large, and there may be frequent cycling of both.

The problem is exacerbated because realistic material tests must expose samples to neutron fluxes of a similar level for a similar length of time as those expected in a fusion power plant. Such a neutron source is nearly as complicated and expensive as a fusion reactor itself would be. Proper materials testing will not be possible in ITER, and a proposed materials testing facility, IFMIF, was still at the design stage in 2005.

The material of the plasma facing components (PFC) is a special problem. The PFC do not have to withstand large mechanical loads, so neutron damage is much less of an issue. They do have to withstand extremely large thermal loads, up to 10 MW/m², which is a difficult but solvable problem. Regardless of the material chosen, the heat flux can only be accommodated without melting if the distance from the front surface to the coolant is not more than a centimeter or two. The primary issue is the interaction with the plasma. One can choose either a low-Z material, typified by graphite although for some purposes beryllium might be chosen, or a high-Z material, usually tungsten with molybdenum as a second choice. Use of liquid metals (lithium, gallium, tin) has also been proposed, e.g., by injection of 1–5 mm thick streams flowing at 10 m/s on solid substrates.

If graphite is used, the gross erosion rates due to physical and chemical sputtering would be many meters per year, so one must rely on redeposition of the sputtered material. The location of the redeposition will not exactly coincide with the location of the sputtering, so one is still left with erosion rates that may be prohibitive. An even larger problem is the tritium co-deposited with the redeposited graphite. The tritium inventory in graphite layers and dust in a reactor could quickly build up to many kilograms, representing a waste of resources and a serious radiological hazard in case of an accident. The consensus of the fusion community seems to be that graphite, although a very attractive material for fusion experiments, cannot be the primary PFC material in a commercial reactor.

The sputtering rate of tungsten can be orders of magnitude smaller than that of carbon, and tritium is not so easily incorporated into redeposited tungsten, making this a more attractive choice. On the other hand, tungsten impurities in a plasma are much more damaging than carbon impurities, and self-sputtering of tungsten can be high, so it will be necessary to ensure that the plasma in contact with the tungsten is not too hot (a few tens of eV rather than hundreds of eV). Tungsten also has disadvantages in terms of eddy currents and melting in off-normal events, as well as some radiological issues.

While fusion power is still in early stages of development, substantial sums have been and continue to be invested in research. In the EU almost € 10 billion was spent on fusion research up to the end of the 1990s, and the new ITER reactor alone is budgeted at € 10 billion. It is estimated that up to the point of possible implementation of electricity generation by nuclear fusion, R&D will need further promotion totalling around € 60-80 billion over a period of 50 years or so (of which € 20-30 billion within the EU).[18] Nuclear fusion research receives € 750 million (excluding ITER funding), compared with € 810 million for all non-nuclear energy research combined,[19] putting research into fusion power well ahead of that of any single rivaling technology.

No comments:

Post a Comment